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Abstract. Network slicing is an important network technology that meets different 5G application 

scenarios. Aiming at the differentiated needs of business and the problem of providing customized network 

services for tenants through resource mapping, a network slicing resource mapping algorithm oriented to 

latency and reliability awareness is proposed. First, in order to fully perceive the latency and reliability 

indicators of the underlying nodes, the reinforcement learning model is introduced into the node mapping 

process, and the ability of the model to interact with the environment is used to enable it to perceive changes 

in the underlying state and make dynamic decisions. Secondly, in the link mapping stage, facing the different 

requirements of delay and reliability, a hierarchical mapping strategy is adopted to realize a network slice 

resource mapping algorithm for differentiated services. Finally, through simulation and comparison with 

other algorithms, the results show that the proposed algorithm not only meets the requirements of reliability 

and delay, but also improves the request acceptance rate and resource utilization rate, and guarantees the 

delay and reliability of service quality. 

Keywords: Network slicing, Business-oriented, Resource allocation, reinforcement learning.  

1. Introduction 

As a key network technology to meet the diverse requirements of 5G, network slicing is essentially a 

customized virtual network that shares infrastructure resources but is logically completely isolated. Network 

slice resource mapping is a key step in network slice generation [1,2]. By abstracting the user's business 

requirements into network resource requirements, network slices can be allocated on demand and isolated 

from each other. 

With the rise of artificial intelligence (AI) field, many researchers have begun to try to integrate AI into 

network slicing technology. In the research of network slice resource mapping, Li R et al. proposed to apply 

deep reinforcement learning to network slice mapping problem [3], which is considered to be a promising 

research direction. H. Yao, B. Zhang [4] and others used the reinforcement learning (RL) model to integrate 

with the VNE algorithm to achieve dynamic virtual network mapping, and the results were better than other 

algorithms in terms of long-term income and acceptance rate. Wang C, Zheng F [5] and others added a 

neural network to the algorithm, and designed a reward function according to the node and link resource 

consumption, make a connection between the node mapping and link mapping stages of VNE. In the 

literature [6], the author uses the RL model to introduce the differential characteristics of nodes and links 

into the algorithm, and simultaneously considers the node and link mapping, and the results are better in the 

long-term benefit-cost ratio and acceptance rate. RL has the ability to frequently interact with the 

environment, and can fully perceive the dynamic changes of the underlying network resources. On the other 

hand, with the help of its reward function system, slicing can perform more accurate mapping when facing 

diversified business requirements. 

The International Telecommunication Union (ITU) sum-marized the three main application scenarios of 

5G networks [7], the Ultra Reliable and Low Latency Communication (uRLLC) scenario requires the 

network to have the characteristics of high reliability and low latency. First, in the existing delay-aware 

research, the authors of [8-10] assign the delay as a resource to the underlying link, and set the algorithm 

optimization goal to minimize link delay resources to meet low-latency requirements slicing business request. 

The authors of the literature [11,12] transformed the optimization goal of minimizing the delay into the 
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topology goal of the minimum number of hops in the path, and achieved the purpose of reducing the delay 

by reducing the node size and the number of transmission hops in the path. Secondly, in the current research 

on reliability perception, the literature [13-17] improves the reliability of the network by setting backup. The 

network performance can be recovered faster by means of backup, but the backup will occupy more 

resources and increase the mapping cost. In [18,19], the author quantifies the failure of the underlying 

equipment as a reliability evaluation index, and proposes a slice mapping algorithm for different business 

types, which not only ensures the reliability of slices, but also meets the diversified needs of the business. In 

[20], the author comprehensively considers the underlying topology, reliability evaluation of a single node 

and the reliability evaluation of the adjacent environment of the node as the reliability indicators of the node. 

Through multi-dimensional resource evaluation, the underlying failure probability of the slice is reduced, and 

the reliability of the slice is guaranteed. Therefore, in the face of the problem of diversified business needs, 

the corresponding indicators of delay and reliability also have diversified needs. A single perception 

indicator may be one-sided, resulting in insufficient perception of the underlying resources, resulting in sub-

optimal mapping results. 

In summary, a single resource-aware method cannot effectively deal with the multi-demand problem of 

network slicing service types. At the same time, due to the limited physical resources and the dynamic nature 

of business requests, unreasonable mapping will produce sub-optimal mapping results and reduce system 

performance and user experience. Therefore, there is an urgent need for efficient and novel intelligence that 

can sense environmental changes and adjust policies in a timely manner mapping algorithm. In view of the 

above problems, this paper proposes a network slice resource mapping algorithm based on reinforcement 

learning for latency and reliability perception to achieve accurate perception of latency and reliability. 

Considering the topology parameters and characteristic parameters comprehensively, the network slice 

requests are classified and processed to realize the network slice resource mapping of differentiated services. 

2. System Model and Problem Statement 

2.1. Low-level Network Model  

This article abstractly defines the physical Substrate Network (SN) as a weighted undirected graph, 

S ( , , , )N L

S S S SG N L A A= . Where SN  represents a collection of physical nodes of the underlying network, which is 

composed of general physical servers; 
N

SA  represents the node attributes of the physical server, such as CPU 

resources and reliability evaluation; 
SL  represents the set of physical links connecting the server, and 

L

SA  

represents the attributes of the physical link, such as bandwidth resources and delay evaluation. 

2.2. Slice Request Model  

The Slice Request Model will be represented by ( , , , , )N L Q

V V V V V VG N L R R R= , Where 
VN is the set of all nodes 

in the slicing request, and N

VR  is the resource constraint of each node in the slicing request, such as the CPU 

capacity requirement of the node; VL  represents the set of all links in the slicing request, L

VR  represents the 

resource constraint of each link in the slicing request, such as the bandwidth requirement of the link; 
Q

VR  

represents the overall evaluation constraint of the current slicing request, such as reliability evaluation RD 

and delay evaluation DL, which are mainly studied in this paper. 

2.3. Slice Mapping Problem Statement  

The process of network slice resource mapping starts with a network slice request initiated by a tenant, 

and physical network resources are allocated to the target slice according to the resource requirements of the 

current request. The mapping process from the slice request 
VG to the underlying network SG  is called the 

resource mapping process of the network slice 
V

SG . It is represented by =(N ,P )k k k k

v s s sM G G→： . Where Nk

s SN  

represents the set of underlying nodes to be mapped by virtual node Nk

v  in the kth request, the underlying 

node in the set allocates resources for the virtual node and meets its resource requirements; 
k

s SP P  represents 

the virtual link E to be mapped in the kth request The set of underlying paths in the set, where the underlying 

path allocates resources for the virtual link and meets its resource requirements, where 
SP  represents the set 

of reachable paths between pairs of nodes in the underlying physical network. 

3. Algorithm Design 
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The network slicing resource mapping algorithm (OLR-NS) proposed in this paper for latency and 

reliability awareness uses two-stage mapping, which is divided into a node mapping phase and a link 

mapping phase. In the node mapping stage, the reinforcement learning model is introduced, and the strategy 

gradient method is used to train the model. Among them, reliability is the attribute of the node, and delay is 

the attribute of the link. For the problem of delay awareness, the formula is used to convert to the node 

attribute, which is added to the state matrix of the node. Through the improved node state matrix, the model 

can fully perceive the delay and reliability of the underlying nodes. In the link mapping stage, the reliability 

perception is converted from node attributes to link attributes through formulas to strengthen the delay and 

reliability perception in the link. At the same time, a hierarchical mapping strategy is adopted according to 

different slicing requirements. 

The algorithm flow is shown in Fig. 1. 
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Fig. 1: System model. 

There are four steps: First, input the slicing request and the underlying network data, update the node 

state matrix of the underlying network, and enter the mapping strategy network. Second, after the node 

mapping strategy network obtains the state matrix, the mapping probability of each node is calculated, and 

the node with the highest probability is selected as the action of the strategy network. Until the mapping of 

all nodes requested this time is completed, the second step is repeated. Third, the node mapping scheme will 

be passed into the link mapping stage. Then, the bottom-layer path in the bottom-layer network that does not 

meet the resource constraints of the link mapping is cleaned. The cleaned bottom layer network topology is 

sent to the SC-K link mapping algorithm, and the link mapping result of this request is obtained. Fourth, get 

the node mapping scheme and link mapping scheme of the request, calculate the reward function and feed it 

back to the policy network for iterative update. 

3.1. Node Mapping  

In the node mapping stage, the node mapping is modeled as a Markov decision process, and a 

reinforcement learning model is introduced to train the mapping strategy network. Through training to learn 

the optimal node mapping strategy, the Markov decision process includes four basic elements: state, action, 

strategy, and reward. Among them, the node feature state matrix extracted by the underlying network is 

regarded as the state in the decision-making process. It is the mapping between the current virtual node and 

the selected physical node; the strategy is the mapping probability distribution given by the current state of 

the underlying network. The reward is the feedback after the environment gives an action based on the 

strategy. 

Environmental Status: Whether reinforcement learning can complete the mapping efficiently, the agent 

can fully perceive the underlying resources is the key. The node feature vector used to describe the state of 
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the node is expressed as: 
kS =[ ( )k

sRes n , ( )k

sBW n , ( )s

kDEG n , ( )k

sCL n , ( )k

sDS n , ( )k

sRD n , ( )k

sDL n ]. They are in 

order: node capacity, link bandwidth, local topology features-degree centrality, two global topology features-

proximity centrality and node aggregation capability, two business-oriented node feature vectors delay 

evaluation and reliability Sexual evaluation. Part of it is shown as follows. 

a. Selection Node Aggregation Capability: measure the balance between the node and the mapped node 

Both distance, as in (1). Where Molecular part represents the physical node where the virtual node that has 

been mapped in a slicing request is located. 

( , )
( )

1

s s

k

s sn Nk

s

s

SP n n
DS n

N


=

+



 

(1) 

 

Reliability Evaluation Function: Measure the proportion of the non-failure time of the node server in the 

total running time, as in (2). Where ( )k

sMTBF n  represents the mean time between server failures of the 

underlying device node k, and ( )k

sMTTR n  represents the server failure repair time of the underlying device 

node k.  

( )
( )

( ) ( )

k

k s

s k k

s s

MTBF n
RD n

MTBF n MTTR n
=

+  
(2) 

b. Delay Evaluation: Measure the average value of the delay evaluation from this node to other nodes 

in the network, as in (3). Where ( , )k m

s ssp n n  is represented as the shortest path between two nodes. 

( , )

( )

( )
1

k m
s s

N

m i l sp n nk

s

D l

DL n
N

= 
=

−

 
 

(3) 

(1) Node Mapping Strategy Network: The node strategy network model includes: input layer, 

convolution calculation layer, node screening, probability calculation layer, and output layer. The 

strategy network takes the node state matrix of the current underlying network as input. After several 

layers of network conversion, the probability of each node being selected is finally obtained, and the 

output is a mappable probability distribution. 

In the convolutional calculation layer, a weighted calculation is performed on the node state matrix, and 

the resource evaluation vector of the bottom node is calculated and generated, as in (4). And it is used to 

evaluate the matching degree of the underlying node to the virtual node of the current request. 

  ,    0

0      ,    

k k

k S b if S b

otherwise

 


  +  + 
= 
  

(4) 

Where 
k  represents the k-th output of the convolution,   represents the weight vector, and b  

represents the bias vector.  

In the probability calculation layer, the resource evaluation vector of the selected node is converted into 

the probability of the node being selected. The higher the evaluation, the higher the matching degree between 

the node and the current request mapping node, and the greater the corresponding probability. Finally, the 

output is a set of probability distributions of each node, as in (5). 

(2) Reward Function: The reward function affects the iterative direction of the agent's learning strategy. 

It is the criterion for the agent to select actions through the strategy. Therefore, in order to enable the 

model to generate the optimal mapping result that satisfies the slice request, make the result satisfy 

the maximum tolerance values for latency and reliability in the slicing request. In this paper, the 

evaluation function of service quality loss is added to the reward function. At the same time, the 

reward function of the reinforcement learning model is redefined in the case of collaboratively 

considering the resource utilization, as  in (6) and (7). 

k

i

k

i

e

e




 =

  

(5) 
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*uti NodeRU LinkRU=  (6) 

     ,       

       0         ,    

uti QS if map is successful
R

otherwise

−
= 
  

(7) 

(3) Gradient Update: In this paper, a small batch gradient descent method is used to dynamically update 

the network parameters of the strategy. First, use cross entropy to define the loss function of the node 

mapping stage, as in (8). Where k  is a vector coded by one hot− , representing the situation of the 

mapping node. 

( , ) log( )k kk
L    = −  

(8) 

In the iterative process, the number of _batch size  samples is selected for one update, and the parameter 

  is introduced to coordinate the size of the gradient and the calculation speed of training. If   is too large, 

the output may be unstable and unable to converge during training; if   is too small, the training process 

will become extremely slow. In this article, the parameters _batch size  and   are set to 0.05 and 100 after 

many times of tuning. The process of the node mapping algorithm is as follows: 

 

3.2. Link Mapping  

This paper proposes a KSP-based service customization link mapping algorithm (SC-K) to implement 

the link mapping phase of each request. First, before link mapping, the underlying links that do not meet the 

current link bandwidth requirements are temporarily erased. Thus, a new underlying network to ensure the 

resource requirements of the virtual link. Secondly, the delay constraint is compared with the delay 

requirement in the slicing request in the form of the cumulative sum of the underlying link delays, which can 

not only ensure the overall delay profile of the slicing request, but also restrict the number of hops of the path. 

Function, indirectly reduce the bandwidth consumption of the link. The reliability evaluation compares the 

product of each node in the underlying path with the reliability requirements in the slicing request, and 

combines the characteristics of the node with the link mapping to strengthen the relevance of the two-stage 

mapping of the node and the link. 

In order to meet diversified service requirements, this article classifies the slice requests: 

• Type A service, which meets the strict requirements of delay and reliability, but does not require high 

bandwidth. Its one-way delay does not exceed 50ms, the stability evaluation requirement is not less 

than 98%, and the bandwidth demand only accounts for 0.5Mbps;  

• Type B services, compared to Type A, will have less delay and reliability requirements, but have a 

certain bandwidth requirement. Its one-way delay is not more than 100ms, the stability evaluation 

requirement is not less than 97%, and the bandwidth requirement is 2.5Mbps; 

• Type C services are not sensitive to delay and reliability, so there is no specific tolerance value. The 

bandwidth occupancy demand is high. Based on the above data, the final results are shown in Table 1. 

 

Algorithm 1 Node Strategy Network Training Model 

Require: Substrate network sG ; Network slicing request

VG ; Iterations number p 

Ensure: Strategic network model Model ; Weight vector

 ; Bias vector b  

1: initialize(， b )  

2: while iteration < p do 

3:     counter=0 

4:     for Vreq G  do   

5:         for vn req  do  

6:             initialize( subM ) 

7:             for 
k

s Sn G  do 

8:                 
k

sub subM M S +  

9:             end for 

10:            ( )subM            //Feature matrix normalization 

11:            _      k police network with and b   

12:            sn = e-greedy_select(
k ) 

13:              Supdate resource in G  

14:        end for 

15:        if   vn req is Mapped   then 

16:            _ ( )sc k linkmap req−  

17:        end if 

18:        if _   req Map is successfully  then 

19:            ( )reward r req uti loss= = −  

20:            ( )computeGradient reward  

21:        end if 

22:        counter++ 

23:        if counter = _batch size  then 

24:             ( )update               //Update learning rate 

25:        end if 

26:    end for 

27:    iteration++ 

28:end while 
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Table 1:  Categories for Slicing Requests 

Domain Name Bandwidth Resources Reliability Evaluation Latency Evaluation 

A 0-1Mbps 97-99% 50ms 

B 2-4Mbps 95-97% 100ms 

C 1-5Mbps - - 

 
Algorithm 2  Link Mapping Algorithm 

Require: Substrate network sG ; Network slicing request

VG ; Node mapping result nodemap  

Ensure: Link mapping result linkmap  

1： linkmap   

2：initialize ( linkmap ) 

3：for virtual link vl  in VG  do 

4：    
temp

S SG G  

5：    for substrate link sl  in SG  do 

6：        if ( ) ( )s vB l B l  then 

7：            cut sl  in 
temp

SG  

8：        end if 

9：    end for  

10：   Node A= nodemap .get(.startNode) 

3.3. OLR-NS Online Mapping Algorithm  

In general, the OLR-NS algorithm first trains the node mapping strategy network through the 

reinforcement learning model in the existing network environment, completes the node mapping stage 

through the strategy network, and then transmits the node mapping result to the link mapping algorithm 

sc k− . Finally it realizes global online mapping. 

4. Experimental Simulation and Result Analysis 

4.1. Experimental Environment and Simulation Method 

In the simulation experiment, the underlying network topology and network slicing request topology 

used in this article are both generated using GT-ITM tools, and the locations of all physical nodes in the 

underlying network are random, with a probability of 0.5 between nodes connect. The experiment is 

simulated by using the TensorFlow reinforcement learning framework in python in the anaconda 

environment. The specific parameters are shown in Table II and Table III. 

Table 1:  Substrate Network Parameter 

Parameter Name Value Range 

Number of nodes 100 

Number of links 570 

Node CPU resources 50-100 

Link bandwidth resources 50-100 MHZ 

Node reliability 0.95-0.99 

Link delay 0-50 

Table 2:  Network Slice Request Parameter 

Parameter name Value range 

Running time 50000 

Number of slice requests 2000 

Inter-arrival Poisson distribution, reaching 40 requests per 1000 

time units on average 

Life cycle time index distribution 

Number of nodes 2-10 

11：   Node B= nodemap .get(.endNode)  

12：   Node Pair = < Node A , Node B > 

13：   PATH  = KSP(Node Pair) 

14：   for path p  in PATH  do  

15：       Calculate the underlying network delay sdl and reli

ability srd  

16：       Obtain virtual request latency vdl and reliability

vrd  

17：       if sdl vdl , srd vrd  then 

18：           { }vlinkmap linkmap l p + →   

19：           break 

20：       end if 

21：   end for 

22: end for 

23: return linkmap  

637



  

Node CPU resources 0-50 

Link bandwidth resources 0-50 MHZ 

4.2. Simulation Result Analysis 

(1) Evaluation function: The evaluation indicators in this article mainly include: slice successful access 

rate, long-term average benefit-cost ratio, underlying resource node utilization, link utilization, 

average slice deployment time (algorithm time complexity), and service quality loss. 

a. Request Access Rate: The ratio of the number of successful mapping requests to the number of 

request arrivals, as in (9). Where 
0

( )
T

s v

t

M G
=

 represents the number of slice requests successfully 

deployed in a period of time, and 0

T

v

t

G
=

  represents the total number of VNRs that have arrived in this 

period of time. 

0

0

( )
T

s v

t

T

v

t

M G

requestAR

G

=

=

=



 

(9) 

b. Long-term Average Revenue to Cost Ratio: First, after a request is successfully deployed at time T, 

its revenue is defined as in (10), and its cost is defined as in (11). Where ( )vcpu n  represents the CPU 

resource constraint required by the virtual node vn  in the request, ( )vbw l  represents the bandwidth 

resource constraint required by the virtual link vl in the request, and ( )vM l  represents the underlying 

physical path that maps the virtual link. Then, the long-term average benefit-cost ratio is defined as 

in (12). 

( , ) ( ) ( )
v v v v

v v v

n N l L

RE G t cpu n bw l
 

= + 
 

(10) 

( )

( , ) ( ) ( )
v v v v s v

v v v

n N l L l M l

CO G t cpu n bw l
  

= +  
 

(11) 

0 ( )

0 ( )

( , )

( , )

( , )

v map

v map

T

v

t G VN t

v T

v

t G VN t

RE G t

RC G t

CO G t

= 

= 

=

 

 
 

(12) 

c. Resource Utilization: During system operation, the average value of the ratio of occupied resources 

to global resources, as in Long-term average node resource utilization (13) and Long-term average 

link resource utilization (14). Where ( )cS n  and ( )C n  respectively represent the remaining available 

CPU resources and total CPU resources of the current node n, sN  represents the number of physical 

nodes, and V  represents the total number of requests that arrived in the time period; ( )bS l and ( )B l  

respectively represent the remaining available bandwidth of the current link Resources and total 

bandwidth resources, sL represents the number of physical links, and V  represents the total number 

of requests that arrive in this time period. 

0

( )
1

( )
s

c

T
n N

t s

S n

C n
NodeRU

N V



=

−

=




 

(13) 

0

( )
1

( )
s

b

T
l L

t s

S l

B l
LinkRU

L V



=

−

=




 

(14) 

d. Service Quality Loss: Quantify the network service experience of the user side, and express the 

difference between the reliability and delay that the user actually experienced and the request after 

the mapping is completed by the loss of network service quality, as in (15). Where sR  and sD  

respectively represent the actual reliability and delay after the current slicing request is mapped to 

the underlying network, and vR  and vD  respectively represent the reliability and delay tolerance 

thresholds of the current slicing request. 

s v s v

v v

R R D D
QS

R D

− −
= +  (15) 
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(2) Analysis of results: This article will use the evaluation indicators introduced in the previous section 

to evaluate the performance of the OLR-NS implementation algorithm, and combine the deployment 

algorithm of this article with the distributed mapping algorithm (DC) based on the greedy strategy 

[21] and the Markov random walk based Topology-aware mapping algorithms (MCRM) [22] are 

compared. Both the above two algorithms and the algorithm proposed in this paper consider the 

delay requirements and reliability requirements of the slice request. This article will evaluate the 

performance of the algorithm from the aspects of slice access rate, resource utilization, mapping cost 

ratio, service quality loss, and average deployment time of requests, and verify the effectiveness of 

the slicing deployment method in ultra-reliable and low-latency business scenarios. 

a. Algorithm Runtime Analysis: First, in Table IV, the time consumption of the three algorithms is 

shown, where the online mapping time is taken from the average of ten runs of the algorithm. It can 

be seen from the table that the online mapping time of the algorithm proposed in this paper is at a 

lower position than the comparison algorithm. This is due to the ability of the reinforcement learning 

model. After a long time offline training, it can take a small time cost to complete the user The 

online mapping section of the request. 

Table 1:  Average Algorithm Runtime 

Algorithm Name Online Mapping Time (Seconds) Offline Training Time (Seconds) 

OLR-NS 253.40786480903625 799.9914360046387 

DC 74.97001695632935 - 

MCRM 4209.739960432053 - 

b. Algorithm Request Acceptance Rate: It can be seen from Fig. 2 that the acceptance rate of the three 

algorithms was relatively high at the beginning, and almost any slicing request can be met with 

sufficient resources in the underlying network. With the rapid occupation of the underlying resources, 

the three algorithms have begun to experience a decline in request acceptance rates. The OLR-NS 

algorithm relies on reinforcement learning to accurately and reasonably allocate resources, and has 

the highest acceptance rate and a slow decline curve in the initial stage. In the later stage of the 

mapping, the request acceptance rate is in a long-term stable state, and the OLR-NS and MCRM 

algorithms are recombined and maintained at a relatively high state. However, as shown in Table IV, 

OLR-NS has a lot less time complexity than MCRM in terms of the average execution time of the 

algorithm. Highlight all author and affiliation lines. 

c. Algorithm Resource Utilization: Fig. 3 and Fig. 4 show the performance of the three algorithms on 

node resource utilization and link resource utilization. The OLR-NS algorithm is superior to other 

algorithms whether it is at the beginning of the mapping or in a long-term stable state. It proves that 

the strategy network of the reinforcement learning model effectively utilizes the underlying 

resources during the mapping process. Through feature state extraction and training, the agent is 

each virtual node selects the best underlying node; it also proves that the reinforcement learning 

model can effectively alleviate the problem of low resource efficiency caused by time delay and 

reliability. 

                  
Fig. 2: Request acceptance rate.                                          Fig. 3: Average node utilization.                      
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Fig. 4: Average link utilization.                                          Fig. 5: Loss of service quality.                      

d. Algorithm Service Quality Loss: Fig. 5 shows the performance of the mapping results of the three 

algorithms in terms of service quality. The figure shows the difference between the delay and 

reliability evaluation of the mapping result and the demand of the slice request, that is, the service 

quality loss value. If it is less than the requested maximum tolerance value, the loss value of this 

mapping is 0, and an accumulative sum form is adopted at the same time, so that the result display 

can be more intuitive. It can be seen from the figure that the ORL-NS algorithm has a lower service 

quality loss. Therefore, in the actual user experience, in addition to providing a network with 

corresponding characteristics, it can also provide a more secure and stable network service supply. 

These characteristics are also in line with the URLLC application. The requirements of the scene. 

e. Algorithm Revenue to Cost Ratio: Fig. 6 shows the comparison of the long-term benefit-cost ratios 

of the three algorithms, and the OLR-NS algorithm is in a relatively low position at all stages. This is 

because, in order to improve the request acceptance rate and service quality assurance of the network, 

many requirements for link reliability and delay have been increased in the link mapping stage, and 

the requirements for cost have been appropriately relaxed, resulting in a relatively low selection of 

mapping results. The long path increases the cost of the link, so there is no higher revenue-cost ratio 

between the MCRM algorithm and the DC algorithm. 

5. Conclusion 

This paper studies the 5G network, in order to meet the needs of different application scenarios and 

realize the service-oriented network slicing resource mapping problem, a network slicing mapping algorithm 

oriented to delay and reliability perception based on reinforcement learning is proposed. The simulation 

results show that compared with the DC and MCRM algorithms, the algorithm has a higher slice acceptance 

rate, long-term resource utilization, lower running time cost and higher quality of service guarantee. Among 

them, this article simply distinguishes slicing requests based on two characteristics: reliability and delay. At 

present, 5G has three major application scenarios, and there can be more complete and fine-grained business 

distinctions. Therefore, in the next step, we will continue to improve the evaluation plan for slice business 

types and design a better slice mapping algorithm to balance the relationship between service quality, 

acceptance rate, and resource utilization. 
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